超级老虎机系统-老虎机报警器_皇冠网百家乐阿_全讯网回馈现金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐有免费玩| 聚宝盆百家乐的玩法技巧和规则| 大发888bet娱乐场下载| 百家乐官网庄家提成| 皇冠足球投注网| 凱旋門百家乐官网娱乐城| 大发888 dafa888 gzsums| 钱隆百家乐官网破解版| 大发8888游戏平台| 百家乐官网号技巧| 大发888 casino组件下载| 赌场百家乐官网台| 左云县| 百家乐官网套利| 菲律宾太阳城网| 大发888娱乐场 手机版| 24山方位吉凶| 和记网上娱乐| 电子百家乐作假| 百家乐官网真人游戏娱乐| E世博网址| 百家乐游戏出售| 百家乐官网手机游戏下载| 全讯网社区| 做生意店铺风水好吗| 百家乐官网论坛代理合作| 百家乐号破| 百家乐真人视屏游戏| 桂东县| 威尼斯人娱乐城网络博彩| 爱赢百家乐现金网| 西贡区| 丽星百家乐的玩法技巧和规则| 沈阳棋牌网| 模拟百家乐下载| 网上百家乐娱乐场| 百家乐官网公开| 百家乐官网代理在线游戏可信吗网上哪家平台信誉好安全 | 大发888娱乐城下载新澳博| 百家乐视频游戏世界| 闲和庄百家乐官网娱乐平台|