超级老虎机系统-老虎机报警器_皇冠网百家乐阿_全讯网回馈现金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐官网秘诀| 澳门百家乐官网真人娱乐城| 皇博娱乐| 十三张百家乐官网的玩法技巧和规则| 大发8880| 百家乐官网网站程序| 二八杠规则| 电玩百家乐的玩法技巧和规则 | 大发888娱乐场 888| 百家乐玩法的技巧| 网上百家乐官网哪家最好| 大发888开户注册首选| 百家乐投注方法新版| 百家乐官网娱乐城棋牌| 大发888娱乐场下载| 红桃K百家乐娱乐城| 百家乐缆的打法| 百家乐官网双面数字筹码怎么出千| 水果机赌博| 总玩百家乐有赢的吗| 属马的和属猴的在一起做生意好吗| 百家乐官网手机软件| 博e百娱乐城怎么样| 大世界百家乐赌场娱乐网规则| 百家乐官网是个什么样的游戏 | 中国足球竞猜网| 大发888娱乐城首页| 百家乐网上娱乐城| 永利娱乐| 百家乐唯一能长期赢钱的方法| 粤港澳百家乐赌场娱乐网规则| scc太阳城俱乐部| 十三张百家乐官网的玩法技巧和规则 | 现金百家乐破解| 百家乐免费是玩| 单机百家乐官网小游戏| 百家乐官网看澳门| 澳门百家乐洗码提成查询| 百乐门娱乐城注册| 澳门百家乐秘积| 大发888娱乐场漏洞|