超级老虎机系统-老虎机报警器_皇冠网百家乐阿_全讯网回馈现金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

三元名家論壇:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains
作者:     供圖:     供圖:     日期:2025-05-06     來源:    

講座主題:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains

專家姓名:安靜

工作單位:貴州師范大學

講座時間:2025年05月07日14:00-15:00

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

In this paper, we introduce and investigate a novel numerical method for solving the Cahn-Hilliard equation in two-dimensional complex domains by employing region transformation. Initially, we convert the fourth-order equation into a second-order coupled system and formulate its first- and second-order semi-implicit schemes. Afterwards, we transform them into the polar coordinates equivalents. By introducing a category of weighted Sobolev spaces, we elaborate on fully discrete schemes and offer a theoretical validation of their stability. In particular, the introduction of pole singularities and the nonlinearity of the coupling problem pose significant challenges to theoretical analysis. To address these challenges, we introduce a novel class of projection operators and establish their approximation properties. Leveraging these properties, we provide error estimates for the approximate solutions. To validate our theoretical insights and algorithm's efficacy, we conclude with a series of numerical examples.

主講人介紹:

安靜,貴州師范大學教授,博士生導師,主持完成國家自然科學基金項目3項,在研國家自然科學基金項目1項,在SIAM J NUMER ANAL、J SCI COMPUT、APPL NUMER MATH等期刊發表SCI學術論文30余篇。

闲和庄百家乐官网娱乐城| 波音现金网投注| 玉环县| 新澳门百家乐官网娱乐城| 博狗投注| 百家乐官网网上赌局| 百家乐官网tt娱乐场开户注册 | 金花百家乐官网娱乐城| 利高百家乐的玩法技巧和规则| 澳门百家乐登陆网址| 威尼斯人娱乐网站安全吗| 台湾省| 介绍百家乐官网赌博技巧| 澳门百家乐真人娱乐场| 百家乐官网视频二人雀神| 做生意房子选哪个方位| 威尼斯人娱乐城是波音| 百家乐官网园云鼎娱乐网| 百家乐网络游戏信誉怎么样| bet9全讯网查询| 网络百家乐官网路子玩| 新彩百家乐的玩法技巧和规则 | 百家乐官网排名| 百家乐官网沙| 德州扑克的玩法| 百家乐官网那个平台好| 百家乐2号技术打法| 天鸿德州扑克游戏币| 波音百家乐游戏| 明升88| 玩百家乐的玩法技巧和规则| 粤港澳百家乐官网娱乐网| 姜堰市| 诺贝尔百家乐的玩法技巧和规则 | 肯博百家乐官网现金网| 百家乐官网麻将筹码币| 斗地主棋牌游戏| 百家乐增值公式| 百家乐官网网上投注系统| 百家乐博彩免费体验金3| 百家乐官网打水套利|