超级老虎机系统-老虎机报警器_皇冠网百家乐阿_全讯网回馈现金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

百家乐视频游365| 百家乐官网制胜秘| 易盈国际娱乐城| 百家乐官网桌出租| 恒利百家乐的玩法技巧和规则| 百家乐官网浴盆博彩通排名| 威尼斯人娱乐城信誉| 百家乐官网赌场怎么玩| 宝马会百家乐娱乐城| 赌场百家乐官网规则| 大发888微信公众号2| 百家乐官网陷阱| bet365官方| 百家乐方案| 闲和庄百家乐官网娱乐| 开封市| 大发888官方授权网| 百家乐太阳城球讯网| 金濠国际网| 全讯网.com| 百家乐官网现金游戏注册送彩金 | 百家乐是怎样算牌| 24卦像与阳宅朝向吉凶| 德州扑克怎么玩的| 如何玩百家乐赚钱| 百家乐作弊内幕| 百家乐官网是骗人吗| 大发888.comwf| 威尼斯人娱乐平台网上百家乐| 7月24日风水| 博士百家乐官网现金网| 娱乐场| 大发888游乐场下载| 博彩百家乐画谜网| 网络百家乐官网真假| 沙洋县| ,博彩通| 澳门百家乐下三路| 百家乐有真假宝单吗| 缅甸百家乐官网赌场| 网上百家乐官网内|