超级老虎机系统-老虎机报警器_皇冠网百家乐阿_全讯网回馈现金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

tt娱乐城怎么样| 爱拼娱乐城| K7百家乐的玩法技巧和规则| 曲水县| 百家乐怎样捉住长开| A8娱乐城官网| 百家乐百胜注码法| 百家乐官网大赢家书籍| 百家乐怎么才能包赢| 娱乐城注册送金| 新利百家乐的玩法技巧和规则 | 百家乐游戏机出千| 南溪县| 致胜百家乐的玩法技巧和规则| 百家乐官网暗红色桌布| bet365娱乐场注册| 星河百家乐现金网| 百家乐官网真钱送彩金| 网上娱乐城开户| 百家乐奥| 缅甸百家乐网站| 百家乐官网真人娱乐平台| 真钱电子游戏平台| 三国百家乐娱乐城| 百家乐视频麻将| 百家乐官网一起多少张牌| 澳门百家乐官网公司| 大发888手机版亚洲城| 百家乐平点| 百家乐流水打法| 百家乐官网学院| 惠安县| 娱乐城开户免存送现金| 91百家乐的玩法技巧和规则| 三公百家乐官网在哪里可以玩| 鹿邑县| bet365直播| 大发888娱乐场是真是假| 百家乐网络娱乐场开户注册| 做生意风水方向怎么看| 试玩区百家乐官网1000|